4.8 Article

Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm

期刊

NATURE NANOTECHNOLOGY
卷 9, 期 7, 页码 531-536

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2014.100

关键词

-

资金

  1. Army Research Office MURI award [W911NF-12-1-0420]
  2. National Science Foundation [1033222]
  3. Army Research Office grant [W911NF-11-1-0137]
  4. Presidential Strategic Initiative Fund from Arizona State University
  5. Div Of Chem, Bioeng, Env, & Transp Sys
  6. Directorate For Engineering [1033222] Funding Source: National Science Foundation

向作者/读者索取更多资源

Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multienzyme complexes(1). This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex(2-4). Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision(5-7) and can also provide nanomechanical control(8-11). Until now, protein-DNA assemblies(12) have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components(13-16) or by facilitating the interface between enzymes/cofactors and electrode surfaces(17,18). Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据