4.8 Article

Metamaterial mirrors in optoelectronic devices

期刊

NATURE NANOTECHNOLOGY
卷 9, 期 7, 页码 542-547

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2014.117

关键词

-

资金

  1. Center for Advanced Molecular Photovoltaics (CAMP) - King Abdullah University of Science and Technology (KAUST) [KUS-C1 -015-21]
  2. Department of Energy [DE-FG07ER46426]

向作者/读者索取更多资源

The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror (phi = pi) to that of a perfect magnetic mirror (phi = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by similar to 20% over a broad spectral band.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据