4.8 Article

Amyloid fibrils nucleated and organized by DNA origami constructions

期刊

NATURE NANOTECHNOLOGY
卷 9, 期 7, 页码 537-541

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2014.102

关键词

-

资金

  1. National Institute of General Medical Sciences [GM-29554]
  2. National Science Foundation [CMMI-1120890, CCF-1117210]
  3. MURI from the Army Research Office [W911NF-11-1-0024]
  4. Office of Naval Research [N000141110729, N000140911118]
  5. Australian Nanotechnology Network Overseas Travel Fellowship
  6. Melbourne Abroad Travelling Scholarship
  7. Bio21 Institute
  8. Particulate Fluids Processing Centre
  9. ARC Dairy Innovation Hub
  10. US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]
  11. Directorate For Engineering
  12. Div Of Civil, Mechanical, & Manufact Inn [1120890] Funding Source: National Science Foundation
  13. Division of Computing and Communication Foundations
  14. Direct For Computer & Info Scie & Enginr [1117210] Funding Source: National Science Foundation

向作者/读者索取更多资源

Amyloid fibrils are ordered, insoluble protein aggregates that are associated with neurodegenerative conditions such as Alzheimer's disease(1). The fibrils have a common rod-like core structure, formed from an elongated stack of a-strands, and have a rigidity similar to that of silk (Young's modulus of 0.2-14 GPa)(2). They also exhibit high thermal and chemical stability(3) and can be assembled in vitro from short synthetic non-disease-related peptides(4,5). As a result, they are of significant interest in the development of self-assembled materials for bionanotechnology applications(6). Synthetic DNA molecules have previously been used to form intricate structures and organize other materials such as metal nanoparticles(7,8) and could in principle be used to nucleate and organize amyloid fibrils. Here, we show that DNA origami nanotubes can sheathe amyloid fibrils formed within them. The fibrils are built by modifying the synthetic peptide fragment corresponding to residues 105-115 of the amyloidogenic protein transthyretin(9) and a DNA origami(10) construct is used to form 20-helix DNA nanotubes with sufficient space for the fibrils inside. Once formed, the fibril-filled nanotubes can be organized onto predefined two-dimensional platforms via DNA-DNA hybridization interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据