4.8 Article

Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics

期刊

NATURE NANOTECHNOLOGY
卷 8, 期 3, 页码 180-186

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2012.257

关键词

-

向作者/读者索取更多资源

Single-walled carbon nanotubes have exceptional electronic properties and have been proposed as a replacement for silicon in applications such as low-cost thin-film transistors and high-performance logic devices(1). However, practical devices will require dense, aligned arrays of electronically pure nanotubes to optimize performance, maximize device packing density and provide sufficient drive current (or power output) for each transistor(2). Here, we show that aligned arrays of semiconducting carbon nanotubes can be assembled using the Langmuir-Schaefer method. The arrays have a semiconducting nanotube purity of 99% and can fully cover a surface with a nanotube density of more than 500 tubes/mu m. The nanotube pitch is self-limited by the diameter of the nanotube plus the van der Waals separation, and the intrinsic mobility of the nanotubes is preserved after array assembly. Transistors fabricated using this approach exhibit significant device performance characteristics with a drive current density of more than 120 mu A mu m(-1), transconductance greater than 40 mu S mu m(-1) and on/off ratios of similar to 1 x 10(3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据