4.8 Article

A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems

期刊

NATURE NANOTECHNOLOGY
卷 8, 期 11, 页码 865-872

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2013.209

关键词

-

资金

  1. US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]

向作者/读者索取更多资源

Nanoparticles coated with DNA molecules can be programmed to self-assemble into three-dimensional superlattices. Such superlattices can be made from nanoparticles with different functionalities and could potentially exploit the synergetic properties of the nanoscale components. However, the approach has so far been used primarily with single-component systems. Here, we report a general strategy for the creation of heterogeneous nanoparticle superlattices using DNA and carboxylic-based conjugation. We show that nanoparticles with all major types of functionality-plasmonic (gold), magnetic (Fe2O3), catalytic (palladium) and luminescent (CdSe/Te@ZnS and CdSe@ZnS)-can be incorporated into binary systems in a rational manner. We also examine the effect of nanoparticle characteristics (including size, shape, number of DNA per particle and DNA flexibility) on the phase behaviour of the heterosystems, and demonstrate that the assembled materials can have novel optical and field-responsive properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据