4.8 Article

An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure

期刊

NATURE NANOTECHNOLOGY
卷 5, 期 3, 页码 230-236

出版社

NATURE PORTFOLIO
DOI: 10.1038/NNANO.2010.13

关键词

-

资金

  1. Defense Advanced Research Projects Agency (DARPA)
  2. US Department of Energy, Office of Basic Energy Sciences [DE-FG02-02-ER15368, DE-FG02-07ER46453, DE-FG02-07ER46471]
  3. Division of Catalysis and Division of Materials Sciences and Engineering
  4. Sandia National Laboratories LDRD

向作者/读者索取更多资源

Proton exchange membrane fuel cells have the potential for applications in energy conversion and energy storage, but their development has been impeded by problems with the membrane electrode assembly. Here, we demonstrate that a silicon-based inorganic-organic membrane offers a number of advantages over Nafion-the membrane widely used as a proton exchange membrane in hydrogen fuel cells-including higher proton conductivity, a lack of volumetric size change, and membrane electrode assembly construction capabilities. Key to achieving these advantages is fabricating a silicon membrane with pores with diameters of similar to 5-7 nm, adding a self-assembled molecular monolayer on the pore surface, and then capping the pores with a layer of porous silica. The silica layer reduces the diameter of the pores and ensures their hydration, resulting in a proton conductivity that is two to three orders of magnitude higher than that of Nafion at low humidity. A membrane electrode assembly constructed with this proton exchange membrane delivered an order of magnitude higher power density than that achieved previously with a dry hydrogen feed and an air-breathing cathode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据