4.8 Article

DNA computing circuits using libraries of DNAzyme subunits

期刊

NATURE NANOTECHNOLOGY
卷 5, 期 6, 页码 417-422

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2010.88

关键词

-

资金

  1. EC
  2. Office of Naval Research, USA
  3. Converging Technologies Fellowship (Israel Science Foundation)

向作者/读者索取更多资源

Biological systems that are capable of performing computational operations(1-3) could be of use in bioengineering and nanomedicine(4,5), and DNA and other biomolecules have already been used as active components in biocomputational circuits(6-13). There have also been demonstrations of DNA/RNA-enzyme-based automatons(12), logic control of gene expression(14), and RNA systems for processing of intracellular information(15,16). However, for biocomputational circuits to be useful for applications it will be necessary to develop a library of computing elements, to demonstrate the modular coupling of these elements, and to demonstrate that this approach is scalable. Here, we report the construction of a DNA-based computational platform that uses a library of catalytic nucleic acids (DNAzymes)(10), and their substrates, for the input-guided dynamic assembly of a universal set of logic gates and a half-adder/half-subtractor system. We demonstrate multilayered gate cascades, fan-out gates and parallel logic gate operations. In response to input markers, the system can regulate the controlled expression of anti-sense molecules, or aptamers, that act as inhibitors for enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据