4.8 Article

Very large magnetoresistance in graphene nanoribbons

期刊

NATURE NANOTECHNOLOGY
卷 5, 期 9, 页码 655-659

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2010.154

关键词

-

资金

  1. Henry Samueli School of Engineering and an Applied Science
  2. NSF [0956171]
  3. NIH, NIH Roadmap for Medical Research [1DP2OD004342 01]

向作者/读者索取更多资源

Graphene has unique electronic properties(1,2), and graphene nanoribbons are of particular interest because they exhibit a conduction bandgap that arises due to size confinement and edge effects(3-11). Theoretical studies have suggested that graphene nanoribbons could have interesting magneto-electronic properties, with a very large predicted magnetoresistance(4,12-20). Here, we report the experimental observation of a significant enhancement in the conductance of a graphene nanoribbon field-effect transistor by a perpendicular magnetic field. A negative magnetoresistance of nearly 100% was observed at low temperatures, with over 50% magnetoresistance remaining at room temperature. This magnetoresistance can be tuned by varying the gate or source-drain bias. We also find that the charge transport in the nanoribbons is not significantly modified by an in-plane magnetic field. The large observed values of magnetoresistance may be attributed to the reduction of quantum confinement through the formation of cyclotron orbits and the delocalization effect under the perpendicular magnetic field(15-20).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据