4.8 Article

Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes

期刊

NATURE NANOTECHNOLOGY
卷 4, 期 2, 页码 114-120

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2008.369

关键词

-

资金

  1. Beckman Young Investigator Award
  2. National Science Foundation (NSF)
  3. Center for Environmental Health Sciences
  4. National Cancer Institute [U54-CA119342-01]

向作者/读者索取更多资源

Nanoscale sensing elements offer promise for single-molecule analyte detection in physically or biologically constrained environments. Single-walled carbon nanotubes have several advantages when used as optical sensors(1-3), such as photostable near-infrared emission for prolonged detection through biological media(2,4,5) and single-molecule sensitivity(6). Molecular adsorption can be transduced into an optical signal by perturbing the electronic structure of the nanotubes(7). Here, we show that a pair of single-walled nanotubes provides at least four modes that can be modulated to uniquely fingerprint agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating the detection of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species, which are spectroscopically differentiated into four distinct classes, and also demonstrate single-molecule sensitivity in detecting hydrogen peroxide. Finally, we detect and identify these analytes in real time within live 3T3 cells, demonstrating multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据