4.8 Article

Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo

期刊

NATURE MEDICINE
卷 20, 期 5, 页码 559-122

出版社

NATURE RESEARCH
DOI: 10.1038/nm.3520

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [Sonderforschungsbereich 870, Transregio 128]
  2. German Federal Ministry of Research and Education (BMBF, Competence Network Multiple Sclerosis)
  3. European Research Council (ERC) under the European Union's Seventh Framework Program (FP/ERC) [310932]
  4. Hertie Foundation
  5. Verein Therapieforschung fur MS-Kranke e.V
  6. Institute of Advanced Studies (Technische Universitat Munchen)
  7. Alexander von Humboldt Foundation
  8. Center for Integrated Protein Science (Munich) [EXC 114]
  9. DFG [SFB 596, SFB 870, SFB 938, SFB 1036]
  10. DZNE (Munich)
  11. SyNergy [EXC 1010]
  12. DFG Priority Program 1710
  13. US National Institutes of Health [Ca 049797]
  14. Edward P. Evans Foundation
  15. BMBF ('LungSys')
  16. Gertrud Reemtsma Foundation (Max Planck Society)
  17. German National Academic Foundation
  18. Wings of Life Foundation
  19. Human Frontier Science Program
  20. Graduate School of Technische Universitat Munchen

向作者/读者索取更多资源

Mitochondrial redox signals have a central role in neuronal physiology and disease. Here we describe a new optical approach to measure fast redox signals with single-organelle resolution in living mice that express genetically encoded redox biosensors in their neuronal mitochondria. Moreover, we demonstrate how parallel measurements with several biosensors can integrate these redox signals into a comprehensive characterization of mitochondrial function. This approach revealed that axonal mitochondria undergo spontaneous 'contractions' that are accompanied by reversible redox changes. These contractions are amplified by neuronal activity and acute or chronic neuronal insults. Multiparametric imaging reveals that contractions constitute respiratory chain-dependent episodes of depolarization coinciding with matrix alkalinization, followed by uncoupling. In contrast, permanent mitochondrial damage after spinal cord injury depends on calcium influx and mitochondrial permeability transition. Thus, our approach allows us to identify heterogeneity among physiological and pathological redox signals, correlate such signals to functional and structural organelle dynamics and dissect the underlying mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据