4.8 Article

Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo

期刊

NATURE MEDICINE
卷 18, 期 9, 页码 1386-+

出版社

NATURE RESEARCH
DOI: 10.1038/nm.2847

关键词

-

资金

  1. Canada Foundation for Innovation
  2. Canadian Institute of Health Research (CIHR)
  3. AIHS postdoctoral fellowship
  4. Rockefeller University from the National Center for Research Resources (NCRR) [UL1RR024143]

向作者/读者索取更多资源

Neutrophil extracellular traps (NETs) are released as neutrophils die in vitro in a process requiring hours, leaving a temporal gap that invasive microbes may exploit. Neutrophils capable of migration and phagocytosis while undergoing NETosis have not been documented. During Gram-positive skin infections, we directly visualized live polymorphonuclear cells (PMNs) in vivo rapidly releasing NETs, which prevented systemic bacterial dissemination. NETosis occurred during crawling, thereby casting large areas of NETs. NET-releasing PMNs developed diffuse decondensed nuclei, ultimately becoming devoid of DNA. Cells with abnormal nuclei showed unusual crawling behavior highlighted by erratic pseudopods and hyperpolarization consistent with the nucleus being a fulcrum for crawling. A requirement for both Toll-like receptor 2 and complement-mediated opsonization tightly regulated NET release. Additionally, live human PMNs injected into mouse skin developed decondensed nuclei and formed NETS in vivo, and intact anuclear neutrophils were abundant in Gram-positive human abscesses. Therefore early in infection NETosis involves neutrophils that do not undergo lysis and retain the ability to multitask.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据