4.8 Article

TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration

期刊

NATURE MEDICINE
卷 14, 期 7, 页码 738-747

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nm1758

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM063954-06, R01 GM063954] Funding Source: Medline
  2. Grants-in-Aid for Scientific Research [20249015] Funding Source: KAKEN

向作者/读者索取更多资源

Reactive oxygen species (ROS) induce chemokines responsible for the recruitment of inflammatory cells to sites of injury or infection. Here we show that the plasma membrane Ca(2+)-permeable channel TRPM2 controls ROS-induced chemokine production in monocytes. In human U937 monocytes, hydrogen peroxide (H(2)O(2)) evokes Ca(2+) influx through TRPM2 to activate Ca(2+)-dependent tyrosine kinase Pyk2 and amplify Erk signaling via Ras GTPase. This elicits nuclear translocation of nuclear factor-kappa B essential for the production of the chemokine interleukin-8 (CXCL8). In monocytes from Trpm2-deficient mice, H(2)O(2)-induced Ca(2+) influx and production of the macrophage inflammatory protein-2 (CXCL2), the mouse CXCL8 functional homolog, were impaired. In the dextran sulfate sodium-induced colitis inflammation model, CXCL2 expression, neutrophil infiltration and ulceration were attenuated by Trpm2 disruption. Thus, TRPM2 Ca(2+) influx controls the ROS-induced signaling cascade responsible for chemokine production, which aggravates inflammation. We propose functional inhibition of TRPM2 channels as a new therapeutic strategy for treating inflammatory diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据