4.8 Article

Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers

期刊

NATURE MATERIALS
卷 12, 期 8, 页码 754-759

出版社

NATURE RESEARCH
DOI: 10.1038/NMAT3673

关键词

-

资金

  1. Welch Foundation [C-1716]
  2. NSF [DMR-0928297, CNS-0821727, OCI-0959097]
  3. US Army Research Office MURI [W911NF-11-1-0362]
  4. US Office of Naval Research MURI [N000014-09-1-1066]
  5. Nanoelectronics Research Corporation [S201006]
  6. National Science Foundation [DMR-0938330]
  7. Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory
  8. Office of Basic Energy Sciences, US Department of Energy
  9. Division Of Materials Research
  10. Direct For Mathematical & Physical Scien [0938330] Funding Source: National Science Foundation
  11. Div Of Civil, Mechanical, & Manufact Inn
  12. Directorate For Engineering [0928297] Funding Source: National Science Foundation

向作者/读者索取更多资源

Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single-and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据