4.8 Article

The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene

期刊

NATURE MATERIALS
卷 11, 期 9, 页码 759-763

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT3370

关键词

-

资金

  1. Chinese Academy of Sciences (CAS)
  2. Natural Science Foundation of China (NSFC) [11021262]
  3. NSFC [11023001]
  4. Air Force of Scientific Research [FA9550-11-1-0109]
  5. US Department of Energy [DE-SC0001299/DE-FG02-09ER46577]

向作者/读者索取更多资源

The two-dimensional crystalline structures in graphene challenge the applicability of existing theories that have been used for characterizing its three-dimensional counterparts. It is crucial to establish reliable structure-property relationships in the important two-dimensional crystals to fully use their remarkable properties. With the success in synthesizing large-area polycrystalline graphene(1-5), understanding how grain boundaries (GBs) in graphene(2-4) alter its physical properties(5-13) is of both scientific and technological importance. A recent work showed that more GB defects could counter intuitively give rise to higher strength in tilt GBs (ref. 10). We show here that GB strength can either increase or decrease with the tilt, and the behaviour can be explained well by continuum mechanics. It is not just the density of defects that affects the mechanical properties, but the detailed arrangements of defects are also important. The strengths of tilt GBs increase as the square of the tilt angles if pentagon-heptagon defects are evenly spaced, and the trend breaks down in other cases. We find that mechanical failure always starts from the bond shared by hexagon-heptagon rings. Our present work provides fundamental guidance towards understanding how defects interact in two-dimensional crystals, which is important for using high-strength and stretchable graphene(14) for biological and electronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据