4.8 Article

Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics

期刊

NATURE MATERIALS
卷 9, 期 6, 页码 511-517

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT2745

关键词

-

资金

  1. National Security Science and Engineering Faculty Fellowship
  2. US Department of Energy, Division of Materials Sciences through the Frederick Seitz MRL and Center for Microanalysis of Materials at the University of Illinois at Urbana-Champaign [DEFG02-91ER45439]
  3. US Army Research Office [W911 NF 07 1 0618]
  4. National Institutes of Health [P41 EB002520, RO1-NS041811-04, R01 NS48598-04]
  5. Klingenstein Foundation
  6. US Army Research Laboratory
  7. DARPA DSO
  8. Div Of Electrical, Commun & Cyber Sys
  9. Directorate For Engineering [824129] Funding Source: National Science Foundation

向作者/读者索取更多资源

Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据