4.8 Article

Quantitative prediction of solute strengthening in aluminium alloys

期刊

NATURE MATERIALS
卷 9, 期 9, 页码 750-755

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT2813

关键词

-

资金

  1. GM/Brown Collaborative Research Lab
  2. NSF Materials Research Science and Engineering Center at Brown [DMR-0520651]

向作者/读者索取更多资源

Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute-dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method. An analytic model for the strength, or stress to move a dislocation, owing to the random field of solutes, is then presented. The theory, which has no adjustable parameters and is extendable to other metallic alloys, predicts both the energy barriers to dislocation motion and the zero-temperature flow stress, allowing for predictions of finite-temperature flow stresses. Quantitative comparisons with experimental flow stresses at temperature T = 78 K are made for Al-X alloys (X = Mg, Si, Cu, Cr) and good agreement is obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据