4.8 Article

A single-layer wide-angle negative-index metamaterial at visible frequencies

期刊

NATURE MATERIALS
卷 9, 期 5, 页码 407-412

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat2747

关键词

-

资金

  1. Office of Science of the Department of Energy [DE-SC0001293]
  2. National Science Foundation
  3. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  4. Dutch Ministry of Economic Affairs

向作者/读者索取更多资源

Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging(1,2) and invisibility cloaking(3-6). So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave(7,8) to infrared(9-13) frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations(14), require multiple functional layers to achieve strong scattering(13,14) and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/- 50 degrees angular range, yielding a wide-angle NIM at visible frequencies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据