4.8 Article

Explaining the paradoxical diversity of ultrafast laser-induced demagnetization

期刊

NATURE MATERIALS
卷 9, 期 3, 页码 259-265

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT2593

关键词

-

资金

  1. DFG [SPP 1133]
  2. GRK [792]
  3. EU

向作者/读者索取更多资源

Pulsed-laser-induced quenching of ferromagnetic order has intrigued researchers since pioneering works in the 1990s. It was reported that demagnetization in gadolinium proceeds within 100 ps, but three orders of magnitude faster in ferromagnetic transition metals such as nickel. Here we show that a model based on electron-phonon-mediated spin-flip scattering explains both timescales on equal footing. Our interpretation is supported by ab initio estimates of the spin-flip scattering probability, and experimental fluence dependencies are shown to agree perfectly with predictions. A phase diagram is constructed in which two classes of laser-induced magnetization dynamics can be distinguished, where the ratio of the Curie temperature to the atomic magnetic moment turns out to have a crucial role. We conclude that the ultrafast magnetization dynamics can be well described disregarding highly excited electronic states, merely considering the thermalized electron system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据