4.8 Article

Kondo conductance in an atomic nanocontact from first principles

期刊

NATURE MATERIALS
卷 8, 期 7, 页码 563-567

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT2476

关键词

-

资金

  1. Italian Ministry of University and Research
  2. INFM through 'Iniziativa Trasversale Calcolo Parallelo'
  3. ESF
  4. EC
  5. CNR-INFM

向作者/读者索取更多资源

The electrical conductance of atomic metal contacts represents a powerful tool for detecting nanomagnetism. Conductance reflects magnetism through anomalies at zero bias(1-7)-generally with Fano line shapes-owing to the Kondo screening of the magnetic impurity bridging the contact(8,9). A full atomic-level understanding of this nutshell many-body system is of the greatest importance, especially in view of our increasing need to control nanocurrents by means of magnetism. Disappointingly, at present, zero-bias conductance anomalies are not calculable from atomistic scratch. Here, we demonstrate a working route connecting approximately but quantitatively density functional theory (DFT) and numerical renormalization group (NRG) approaches and leading to a first-principles conductance calculation for a nanocontact, exemplified by a Ni impurity in a Au nanowire. A Fano-like conductance line shape is obtained microscopically, and shown to be controlled by the impurity s-level position. We also find a relationship between conductance anomaly and geometry, and uncover the possibility of opposite antiferromagnetic and ferromagnetic Kondo screening-the latter exhibiting a totally different and unexplored zero-bias anomaly. The present matching method between DFT and NRG should permit the quantitative understanding and exploration of this larger variety of Kondo phenomena at more general magnetic nanocontacts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据