4.8 Article

The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films

期刊

NATURE MATERIALS
卷 8, 期 5, 页码 415-420

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT2423

关键词

-

资金

  1. National Science Foundation [DMR-0605957]
  2. St. Jude Medical Corp

向作者/读者索取更多资源

Porous anodic alumina (PAA) films are widely used as templates for functional nanostructures, because of the high regularity and controllability of the pore morphology. However, growth mechanisms have not yet been developed that can explain quantitative relationships between processing conditions and oxide layer geometry. Here, we present a model for steady-state growth of these amorphous films, incorporating the novel feature that metal and oxygen ions are transported by coupled electrical migration and viscous flow. The oxide flow in the model arises near the film-solution interface at the pore bottoms, in response to the constraint of volume conservation. The hypothesis of viscous flow was successfully validated through detailed comparisons to observations of the motion of tungsten tracers in the film. Predictions of localized tensile stress near nanoscale ridges at the metal-film interface were supported by observations of voids at these sites. We suggest that the ordering of PAA may be explained by a mechanism in which metal-film interface motion is regulated by the combination of ionic migration in the oxide and stress-driven interface diffusion of metal atoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据