4.8 Article

Electric-field-induced superconductivity in an insulator

期刊

NATURE MATERIALS
卷 7, 期 11, 页码 855-858

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat2298

关键词

-

向作者/读者索取更多资源

Electric field control of charge carrier density has long been a key technology to tune the physical properties of condensed matter, exploring the modern semiconductor industry. One of the big challenges is to increase the maximum attainable carrier density so that we can induce superconductivity in field-effect-transistor geometry. However, such experiments have so far been limited to modulation of the critical temperature in originally conducting samples because of dielectric breakdown(1-4). Here we report electric-field-induced superconductivity in an insulator by using an electric-double-layer gating in an organic electrolyte(5). Sheet carrier density was enhanced from zero to 10(14) cm(-2) by applying a gate voltage of up to 3.5V to a pristine SrTiO3 single-crystal channel. A two-dimensional superconducting state emerged below a critical temperature of 0.4 K, comparable to the maximum value for chemically doped bulk crystals(6), indicating this method as promising for searching for unprecedented superconducting states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据