4.8 Article

Electron and phonon renormalization near charged defects in carbon nanotubes

期刊

NATURE MATERIALS
卷 7, 期 11, 页码 878-883

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat2296

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [Me 1600/6-1/2]
  2. CONACYT-Mexico [45762, 45772, 41464]
  3. Inter American Collaboration [42428]
  4. Fondo Mixto de Puebla [PUE-2004-CO2-9]
  5. NSF [DMR 0304019, CHE-0454704]
  6. [DEFG02-05ER46207]

向作者/读者索取更多资源

Owing to their influence on electrons and phonons, defects can significantly alter electrical conductance, and optical, mechanical and thermal properties of a material. Thus, understanding and control of defects, including dopants in low-dimensional systems, hold great promise for engineered materials and nanoscale devices. Here, we characterize experimentally the effects of a single defect on electrons and phonons in single-wall carbon nanotubes. The effects demonstrated here are unusual in that they are not caused by defect-induced symmetry breaking. Electrons and phonons are strongly coupled in sp(2) carbon systems, and a defect causes renormalization of electron and phonon energies. We find that near a negatively charged defect, the electron velocity is increased, which in turn influences lattice vibrations locally. Combining measurements on nanotube ensembles and on single nanotubes, we capture the relation between atomic response and the readily accessible macroscopic behaviour.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据