4.8 Article

Water-soluble organo-silica hybrid nanowires

期刊

NATURE MATERIALS
卷 7, 期 9, 页码 718-722

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat2232

关键词

-

向作者/读者索取更多资源

There has been growing interest in the past decade in one-dimensional (1D) nanostructures, such as nanowires, nanotubes or nanorods, owing to their size-dependent optical and electronic properties and their potential application as building blocks, interconnects and functional components for assembling nanodevices(1,2). Significant progress has been made; however, the strict control of the distinctive geometry at extremely small size for 1D structures remains a great challenge in this field. The anisotropic nature of cylindrical polymer brushes has been applied to template 1D nanostructured materials, such as metal, semiconductor or magnetic nanowires(3-6). Here, by constructing the cylindrical polymer brushes themselves with a precursor-containing monomer, we successfully synthesized hybrid nanowires with a silsesquioxane core and a shell made up from oligo(ethylene glycol) methacrylate units, which are soluble in water and many organic solvents. The length and diameter of these rigid wires are tunable by the degrees of polymerization of both the backbone and the side chain. They show lyotropic liquid-crystalline behaviour and can be pyrolysed to silica nanowires. This approach provides a route to the controlled fabrication of inorganic or hybrid silica nanostructures by living polymerization techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据