4.8 Article

Crustal inheritance and a top-down control on arc magmatism at Mount St Helens

期刊

NATURE GEOSCIENCE
卷 11, 期 11, 页码 865-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41561-018-0217-2

关键词

-

资金

  1. USGS Volcano Hazards and Mineral Resources Programs
  2. US National Science Foundation through the GeoPrisms program [EAR1144353]

向作者/读者索取更多资源

In a subduction zone, the volcanic arc marks the location where magma, generated via flux melting in the mantle wedge, migrates through the crust and erupts. While the location of deep magma broadly defines the arc position, here we argue that crustal structures, identified in geophysical data from the Washington Cascades magmatic arc, are equally important in controlling magma ascent and defining the spatial distribution and compositional variability of erupted material. As imaged by a three-dimensional resistivity model, a broad lower-crustal mush zone containing 3-10% interconnected melt underlies this segment of the arc, interpreted to episodically feed upper-crustal magmatic systems and drive eruptions. Mount St Helens is fed by melt channelled around a mid-Tertiary batholith also imaged in the resistivity model and supported by potential-field data. Regionally, volcanism and seismicity are almost exclusive of the batholith, while at Mount St Helens, along its margin, the ascent of viscous felsic melt is enabled by deep-seated metasedimentary rocks. Both the anomalous forearc location and composition of St Helens magmas are products of this zone of localized extension along the batholith margin. This work is a compelling example of inherited structural control on local stress state and magmatism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据