4.8 Article

Topographic relief driven by variations in surface rock density

期刊

NATURE GEOSCIENCE
卷 7, 期 7, 页码 534-540

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NGEO2171

关键词

-

资金

  1. Canadian Institute for Advanced Research

向作者/读者索取更多资源

Earth's surface topography is generated by tectonically induced variations in crustal thickness combined with erosion and, to a lesser degree, by vertical stresses caused by convection in the underlying mantle. Rock hardness and resistance to erosion are also commonly thought to influence topography because hard rocks, such as granites and basalts, usually form topographic highs in the landscape. Here we use analytical and numerical models to simulate the erosion-induced isostatic rebound of rocks. We find that the isostatic rebound that accompanies erosion causes denser rocks to occupy higher elevations in the landscape, thereby creating topographic relief that is proportional to surface rock density differences rather than rock hardness. We quantify this effect, taking into account the flexural strength of the continental lithosphere. We show that in a steady-state erosional setting, density-dependent isostatic rebound can cause the densest rocks to be exhumed at double the rate of surrounding, less-dense rocks and has a stronger effect than typical rock hardness variations. The results imply that denser rock formations should erode faster and therefore be characterized by younger thermochronological ages. Thermochronological data sets from the Kinabalu granite in Borneo and the Shakhdara-Alichur gneiss domes in Pamir confirm this counter-intuitive result. Our findings imply that lateral variations in surface rock density have significant control on the shaping of the large-scale features of Earth's surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据