4.8 Article

Earthquake size distribution in subduction zones linked to slab buoyancy

期刊

NATURE GEOSCIENCE
卷 7, 期 12, 页码 904-908

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NGEO2279

关键词

-

资金

  1. JSPS KAKENHI [23244090]
  2. MEXT KAKENHI [21107007]
  3. Grants-in-Aid for Scientific Research [23244090] Funding Source: KAKEN

向作者/读者索取更多资源

The occurrence of subduction zone earthquakes is primarily controlled by the state of stress on the interface between the subducting and overriding plates. This stress state is influenced by tectonic properties, such as the age of the subducting plate and the rate of plate motion(1-4). It is difficult to directly measure stress on a plate interface. However, the stress state can be inferred using the Gutenberg-Richter relationship's(5) b-value, which characterizes the relative number of small compared to large earthquakes and correlates negatively with differential stress(6-13). That is, a subduction zone characterized by relatively frequent large earthquakes has a low b-value and a high stress state. The b-value for subduction zonesworldwide varies significantly(14,15), but the source of this variance is unclear. Here we use the Advanced National Seismic System earthquake catalogue to estimate b-values for 88 sections in different subduction zones globally and compare the b-values with the age of the subducting plate and plate motions. The b-value correlates positively with subducting plate age, so that large earthquakes occur more frequently in subduction zones with younger slabs, but there is no correlation between b-value and plate motion. Given that younger slabs are warmer and more buoyant, we suggest that slab buoyancy is the primary control on the stress state and earthquake size distribution in subduction zones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据