4.8 Article

Locally enhanced precipitation organized by planetary-scale waves on Titan

期刊

NATURE GEOSCIENCE
卷 4, 期 9, 页码 589-592

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ngeo1219

关键词

-

资金

  1. NASA's Cassini-Huygens mission

向作者/读者索取更多资源

Saturn's moon Titan exhibits an active weather cycle that involves methane(1-8). Equatorial and mid-latitude clouds can be organized into fascinating morphologies on scales exceeding 1,000 km (ref. 9). Observations include an arrow-shaped equatorial cloud that produced detectable surface accumulation, probably from the precipitation of liquid methane(10). An analysis of an earlier cloud outburst indicated an interplay between high-and low-latitude cloud activity, mediated by planetary-scale atmospheric waves(11). Here we present a combined analysis of cloud observations and simulations with a three-dimensional general circulation model of Titan's atmosphere, to obtain a physical interpretation of observed storms, their relation to atmosphere dynamics and their aggregate effect on surface erosion. We find that planetary-scale Kelvin waves arise naturally in our simulations, and robustly organize convection into chevron-shaped storms at the equator during the equinoctial season. A second and much slower wave mode organizes convection into southern-hemisphere streaks oriented in a northwest-southeast direction, similar to observations(9). As a result of the phasing of these modes, precipitation rates can be as high as twenty times the local average in our simulations. We conclude that these events, which produce up to several centimetres of precipitation over length scales exceeding 1,000 km, play a crucial role in fluvial erosion of Titan's surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据