4.8 Article

Sedimentary membrane lipids recycled by deep-sea benthic archaea

期刊

NATURE GEOSCIENCE
卷 3, 期 12, 页码 858-861

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NGEO983

关键词

-

向作者/读者索取更多资源

Deep-sea sediments harbour a vast biosphere. Archaea-one of the three domains of life(1)-are prevalent in marine environments(2-5), and comprise a significant fraction of the biomass in marine sediments(6). Archaeal membranes are well characterized, and are comprised of a glycerol backbone and a nonpolar isoprenoid chain. However, the ecology of sedimentary archaea remains elusive, because it is difficult to grow them in the laboratory. Here, we trace the fate of C-13-labelled glucose added to marine sediments in Sagami Bay, Japan, to determine the in situ mechanisms of membrane synthesis. Following the addition of labelled glucose to sediment samples collected in the region, we placed the cores on the sea floor and sampled them after 9 and 405 days. We found that the C-13 was incorporated into the glycerol backbone of archaeal membranes; C-13 was apparent after 9 days of incubation, but most pronounced after 405 days. However, the isoprenoid chain of the membranes remained unlabelled. On the basis of the differential uptake of C-13, we suggest that the glycerol unit is synthesized de novo, whereas the isoprenoid unit is synthesized from relic archaeal membranes and detritus, because of the prevalence of these compounds in marine sediments. We therefore suggest that some benthic archaea build their membranes by recycling sedimentary organic compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据