4.8 Article

Deep slab hydration induced by bending-related variations in tectonic pressure

期刊

NATURE GEOSCIENCE
卷 2, 期 11, 页码 790-793

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NGEO656

关键词

-

资金

  1. SNF Research [200021-113672/1, 200021-116381/1]
  2. ETH Research [TH-12/05-3, TH-0807-3]
  3. ETH [0-12422-97]

向作者/读者索取更多资源

Bending of oceanic plates at subduction zones results in extension and widespread normal faulting(1) in the upper, brittle part of the slab(2,3). Detailed seismic surveys at trenches reveal that this part of the oceanic plate could be pervasively hydrated for several kilometres below the crust-mantle boundary(4-7). Similarly, heat-flow surveys indicate active fluid circulation within the slab(8). Yet, the mechanisms that enable fluids to percolate to such depths in spite of their natural buoyancy remain unclear. Here we use two-dimensional numerical experiments to show that stress changes induced by the bending oceanic plate produce subhydrostatic or even negative pressure gradients along normal faults, favouring downward pumping of fluids. The fluids then react with the crust and mantle surrounding the faults and are stored in the form of hydrous minerals. We suggest that this process is the dominant mechanism of deep slab hydration, although it may be locally aided by the enhancement in porosity due to prefailure dilatancy(9), pre-existing cracks(10) and migrating fluid-filled cracks(11). Our results have implications for the transport of water into the deeper parts of the mantle(12), and for further clarifying the seismic anisotropy of slabs(13).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据