4.8 Article

The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans

期刊

NATURE GEOSCIENCE
卷 1, 期 9, 页码 597-600

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ngeo282

关键词

-

资金

  1. NERC
  2. Natural Environment Research Council [NER/A/S/2003/00528] Funding Source: researchfish

向作者/读者索取更多资源

Despite its important biological and biogeochemical consequences(1-3), the identification of extensive oceanic anoxia in the geological record is controversial. In particular, global anoxia is difficult to distinguish from spatially restricted anoxia in the deep ocean, or in tectonically isolated basins such as the modern Black Sea. The marine isotope geochemistry of molybdenum (Mo) can help quantify the past oxygenation state of the ocean(4-14), because to first approximation under oxic conditions lighter isotopes of Mo are preferentially removed to sediments, whereas in euxinic conditions quantitative removal leads to no fractionation. However, the isotopic composition of the Mo input from rivers, the main contributor of Mo to the oceans, is poorly constrained and had been assumed to be isotopically comparable to the narrow range found in a small dataset of continental rocks(4-14). Here we present an isotopic analysis of Mo in a set of rivers that together account for 22% of the global riverine water discharge. We find a broad range of variability in the Mo isotopic composition of these rivers, with almost all samples enriched in the heavy isotopes compared with continental rocks. Our data remove key uncertainties associated with the marine Mo isotope budget(14) and strongly suggest near-total anoxia in the mid-Proterozoic ocean(8) as well as during Mesozoic ocean anoxic events(13).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据