4.8 Article

Harnessing redox activity for the formation of uranium tris(imido) compounds

期刊

NATURE CHEMISTRY
卷 6, 期 10, 页码 919-926

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NCHEM.2009

关键词

-

资金

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-12ER16328, USDOE/DESC002183]
  2. National Science Foundation [CHE 1362854]
  3. Laboratory Directed Research and Development program of the Lawrence Livermore National Laboratory
  4. Research Corporation
  5. Direct For Mathematical & Physical Scien
  6. Division Of Chemistry [1362854] Funding Source: National Science Foundation

向作者/读者索取更多资源

Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据