4.8 Article

Global probabilistic annotation of metabolic networks enables enzyme discovery

期刊

NATURE CHEMICAL BIOLOGY
卷 8, 期 10, 页码 848-854

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NCHEMBIO.1063

关键词

-

资金

  1. US National Institutes of Health [GM079759]
  2. National Centers for Biomedical Computing grant [U54CA121852]

向作者/读者索取更多资源

Annotation of organism-specific metabolic networks is one of the main challenges of systems biology. Importantly, owing to inherent uncertainty of computational annotations, predictions of biochemical function need to be treated probabilistically. We present a global probabilistic approach to annotate genome-scale metabolic networks that integrates sequence homology and context-based correlations under a single principled framework. The developed method for global biochemical reconstruction using sampling (GLOBUS) not only provides annotation probabilities for each functional assignment but also suggests likely alternative functions. GLOBUS is based on statistical Gibbs sampling of probable metabolic annotations and is able to make accurate functional assignments even in cases of remote sequence identity to known enzymes. We apply GLOBUS to genomes of Bacillus subtilis and Staphylococcus aureus and validate the method predictions by experimentally demonstrating the 6-phosphogluconolactonase activity of YkgB and the role of the Sps pathway for rhamnose biosynthesis in B. subtilis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据