4.8 Article

Transition state analogs of 5′-methylthioadenosine nucleosidase disrupt quorum sensing

期刊

NATURE CHEMICAL BIOLOGY
卷 5, 期 4, 页码 251-257

出版社

NATURE PORTFOLIO
DOI: 10.1038/nchembio.153

关键词

-

资金

  1. US National Institutes of Health [GM41916]
  2. US Department of Energy
  3. US National Institutes of Health

向作者/读者索取更多资源

5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme involved in S-adenosylmethionine related quorum sensing pathways that induce bacterial pathogenesis factors. Transition state analogs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A and BuT-DADMe-Immucillin-A are slow-onset, tight-binding inhibitors of Vibrio cholerae MTAN (VcMTAN), with equilibrium dissociation constants of 73, 70 and 208 pM, respectively. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. We found that in V. cholerae cells, these compounds are potent MTAN inhibitors with IC50 values of 27, 31 and 6 nM for MT-, EtT- and BuT-DADMe-Immucillin-A, respectively; the compounds disrupt autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe- Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic Escherichia coli O157:H7 with IC50 values of 600 and 125 nM, respectively. BuT-DADMe-Immucillin-A inhibition of autoinducer-2 production in both strains persisted for several generations and caused reduction in biofilm formation. These results support MTAN's role in quorum sensing and its potential as a target for bacterial anti-infective drug design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据