4.8 Article

HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin

期刊

NATURE CHEMICAL BIOLOGY
卷 5, 期 4, 页码 244-250

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nchembio.151

关键词

-

资金

  1. Consortium for Functional Glycomics [GM62116]
  2. US National Science Foundation
  3. National Cancer Institute, National Institutes of Health [N01-CO-12400]

向作者/读者索取更多资源

HIV-1 is a master at deceiving the immune system and usurping host biosynthetic machinery. Although HIV-1 is coated with host-derived glycoproteins, only glycosylation of viral gp120 has been described. Here we use lectin microarray technology to analyze the glycome of intact HIV-1 virions. We show that the glycan coat of human T cell line-derived HIV-1 matches that of native immunomodulatory microvesicles. The carbohydrate composition of both virus and microvesicles is cell-line dependent, which suggests a mechanism to rapidly camouflage the virus within the host. In addition, binding of both virus and microvesicles to antiviral lectins is enriched over the host cell, raising concern about targeting these glycans for therapeutics. This work also sheds light on the binding of HIV-1 to galectin-1, an important human immune lectin. Overall, our work strongly supports the theory that HIV-1 co-opts the exocytic pathway of microvesicles, thus potentially explaining why eliciting a protective antiviral immune response is difficult.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据