4.8 Article

Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control

期刊

NATURE CELL BIOLOGY
卷 15, 期 8, 页码 948-U400

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncb2801

关键词

-

资金

  1. Howard Hughes Medical Institute
  2. National Institute of Health [GM61345]
  3. Human Frontier Scientific Program [RGY0088/201]

向作者/读者索取更多资源

Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by crosslinking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report an antiparallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule-destabilizing activity. In conjunction with Cin8, a kinesin-5 family member, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a slide disassemble model where the sliding and destabilizing activity of Kip3 balance during pre-anaphase. This facilitates normal spindle assembly. However, the destabilizing activity of Kip3 dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据