4.8 Article

Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity

期刊

NATURE CELL BIOLOGY
卷 14, 期 3, 页码 304-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncb2444

关键词

-

资金

  1. NIH [RO1-GM057063]

向作者/读者索取更多资源

Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis(1-3). Here we find that a lipid flippase complex, composed of Lem3, Dnfl or Dnf2 (ref. 4), has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polarity(5), in yeast. By using quantitative microscopy methods, we show that the flippase complex is required for fast dissociation of Cdc42 from the polar cortex by the guanine nucleotide dissociation inhibitor. A loss of flippase activity, or pharmacological blockage of the inward flipping of phosphatidylethanolamine, a phospholipid with a neutral head group, disrupts Cdc42 polarity maintained by guanine nucleotide dissociation inhibitor-mediated recycling. Phosphatidylethanolamine flipping may reduce the charge interaction between a Cdc42 carboxy-terminal cationic region with the plasma membrane inner leaflet, enriched for the negatively charged lipid phosphatidylserine. Using a reconstituted system with supported lipid bilayers, we show that the relative composition of phosphatidylethanolamine versus phosphatidylserine directly modulates Cdc42 extraction from the membrane by guanine nucleotide dissociation inhibitor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据