4.8 Article

Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis

期刊

NATURE CELL BIOLOGY
卷 10, 期 12, 页码 1401-U57

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncb1798

关键词

-

资金

  1. CNRS and an ANR-Blanc
  2. Bourse Region Entreprise

向作者/读者索取更多资源

The morphogenesis of developing embryos and organs relies on the ability of cells to remodel their contacts with neighbouring cells. Using quantitative modelling and laser nano-dissection, we probed the mechanics of a morphogenetic process, the elongation of Drosophila melanogaster embryos, which results from polarized cell neighbour exchanges. We show that anisotropy of cortical tension at apical cell junctions is sufficient to drive tissue elongation. We estimated its value through comparisons between in silico and in vivo data using various tissue descriptors. Nano-dissection of the actomyosin network indicates that tension is anisotropically distributed and depends on myosin II accumulation. Junction relaxation after nano-dissection also suggests that cortical elastic forces are dominant in this process. Interestingly, fluctuations in vertex position ( points where three or more cells meet) facilitate neighbour exchanges. We delineate the contribution of subcellular tensile activity polarizing junction remodelling, and the permissive role of vertex fluctuations during tissue elongation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据