4.8 Article

Tensile forces govern germ-layer organization in zebrafish

期刊

NATURE CELL BIOLOGY
卷 10, 期 4, 页码 429-U122

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncb1705

关键词

-

向作者/读者索取更多资源

Understanding the factors that direct tissue organization during development is one of the most fundamental goals in developmental biology. Various hypotheses explain cell sorting and tissue organization on the basis of the adhesive and mechanical properties of the constituent cells(1). However, validating these hypotheses has been difficult due to the lack of appropriate tools to measure these parameters. Here we use atomic force microscopy ( AFM) to quantify the adhesive and mechanical properties of individual ectoderm, mesoderm and endoderm progenitor cells from gastrulating zebrafish embryos. Combining these data with tissue self-assembly in vitro and the sorting behaviour of progenitors in vivo, we have shown that differential actomyosin-dependent cell-cortex tension, regulated by Nodal/ TGF beta-signalling ( transforming growth factor beta), constitutes a key factor that directs progenitor-cell sorting. These results demonstrate a previously unrecognized role for Nodal-controlled cell-cortex tension in germ-layer organization during gastrulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据