4.8 Article

Increased Diels-Alderase activity through backbone remodeling guided by Foldit players

期刊

NATURE BIOTECHNOLOGY
卷 30, 期 2, 页码 190-192

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt.2109

关键词

-

资金

  1. Center for Game Science at the University of Washington
  2. US Defense Advanced Research Projects Agency (DARPA) [N00173-08-1-G025]
  3. DARPA PDP
  4. Howard Hughes Medical Institute
  5. National Science Foundation [DGE-0718124, 0906026]
  6. Direct For Biological Sciences
  7. Div Of Biological Infrastructure [0906026] Funding Source: National Science Foundation

向作者/读者索取更多资源

Computational enzyme design holds promise for the production of renewable fuels, drugs and chemicals. De novo enzyme design has generated catalysts for several reactions, but with lower catalytic efficiencies than naturally occurring enzymes(1-4). Here we report the use of game-driven crowdsourcing to enhance the activity of a computationally designed enzyme through the functional remodeling of its structure. Players of the online game Foldit(5,6) were challenged to remodel the backbone of a computationally designed bimolecular Diels-Alderase(3) to enable additional interactions with substrates. Several iterations of design and characterization generated a 24-residue helix-turn-helix motif, including a 13-residue insertion, that increased enzyme activity >18-fold. X-ray crystallography showed that the large insertion adopts a helix-turn-helix structure positioned as in the Foldit model. These results demonstrate that human creativity can extend beyond the macroscopic challenges encountered in everyday life to molecular-scale design problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据