4.8 Article

Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles

期刊

NATURE
卷 556, 期 7701, 页码 360-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41586-018-0034-1

关键词

-

资金

  1. Seoul National University
  2. LG Display under LGD-SNU Incubation Program
  3. Creative Materials Discovery Program - National Research Foundation (NRF) under the Ministry of Science, ICT and Future Planning (MSIP), South Korea [2017M3D1A1039377]
  4. KIST-SNU [0543-20180021]
  5. Global Frontier R&D Program of the Center for Multiscale Energy System - NRF-MSIP, South Korea [2012M3A6A7054855]
  6. Engineering Research Center Program of the Center for Optically-assisted Mechanical Systems - NRF-MSIP, South Korea [2015R1A5A1037668]
  7. Global Frontier R&D Program of the Center for Advanced Meta-Materials - NRF-MSIP, South Korea [2014M3A6B3063708]
  8. Global PhD Fellowship Program - NRF-MSIP, South Korea [2014H1A2A1020809, 2017H1A2A1043204]
  9. National Research Foundation of Korea [2017M3D1A1039377, 2014M3A6B3063708, 2014H1A2A1020809, 2017H1A2A1043204, 2012M3A6A7054855, 2015R1A5A1037668] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Understanding chirality, or handedness, in molecules is important because of the enantioselectivity that is observed in many biochemical reactions(1), and because of the recent development of chiral metamaterials with exceptional light-manipulating capabilities, such as polarization control(2-4), a negative refractive index(5) and chiral sensing(6). Chiral nanostructures have been produced using nanofabrication techniques such as lithography(7) and molecular self-assembly(8-11), but large-scale and simple fabrication methods for three-dimensional chiral structures remain a challenge. In this regard, chirality transfer represents a simpler and more efficient method for controlling chiral morphology(12-18). Although a few studies(18,19) have described the transfer of molecular chirality into micrometre-sized helical ceramic crystals, this technique has yet to be implemented for metal nanoparticles with sizes of hundreds of nanometres. Here we develop a strategy for synthesizing chiral gold nanoparticles that involves using amino acids and peptides to control the optical activity, handedness and chiral plasmonic resonance of the nanoparticles. The key requirement for achieving such chiral structures is the formation of high-Miller-index surfaces ({hkl}, h not equal k not equal l not equal 0) that are intrinsically chiral, owing to the presence of 'kink' sites(20-22) in the nanoparticles during growth. The presence of chiral components at the inorganic surface of the nanoparticles and in the amino acids and peptides results in enantioselective interactions at the interface between these elements; these interactions lead to asymmetric evolution of the nanoparticles and the formation of helicoid morphologies that consist of highly twisted chiral elements. The gold nanoparticles that we grow display strong chiral plasmonic optical activity (a dissymmetry factor of 0.2), even when dispersed randomly in solution; this observation is supported by theoretical calculations and direct visualizations of macroscopic colour transformations. We anticipate that our strategy will aid in the rational design and fabrication of three-dimensional chiral nanostructures for use in plasmonic metamaterial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据