4.8 Article

High speed of fork progression induces DNA replication stress and genomic instability

期刊

NATURE
卷 559, 期 7713, 页码 279-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41586-018-0261-5

关键词

-

资金

  1. Danish Cancer Society
  2. Novo Nordisk Foundation
  3. Danish Council for Independent Research
  4. Swedish Research Council
  5. Grant Agency of the Czech Republic [17-14743S]
  6. Czech Ministry of Education, Youth and Sports [NPU LO1304]
  7. Danish National Research Foundation (project CARD)

向作者/读者索取更多资源

Accurate replication of DNA requires stringent regulation to ensure genome integrity. In human cells, thousands of origins of replication are coordinately activated during S phase, and the velocity of replication forks is adjusted to fully replicate DNA in pace with the cell cycle(1). Replication stress induces fork stalling and fuels genome instability(2). The mechanistic basis of replication stress remains poorly understood despite its emerging role in promoting cancer(2). Here we show that inhibition of poly(ADP-ribose) polymerase (PARP) increases the speed of fork elongation and does not cause fork stalling, which is in contrast to the accepted model in which inhibitors of PARP induce fork stalling and collapse3. Aberrant acceleration of fork progression by 40% above the normal velocity leads to DNA damage. Depletion of the treslin or MTBP proteins, which are involved in origin firing, also increases fork speed above the tolerated threshold, and induces the DNA damage response pathway. Mechanistically, we show that poly(ADP-ribosyl) ation (PARylation) and the PCNA interactor p21(Cip1) (p21) are crucial modulators of fork progression. PARylation and p21 act as suppressors of fork speed in a coordinated regulatory network that is orchestrated by the PARP1 and p53 proteins. Moreover, at the fork level, PARylation acts as a sensor of replication stress. During PARP inhibition, DNA lesions that induce fork arrest and are normally resolved or repaired remain unrecognized by the replication machinery. Conceptually, our results show that accelerated replication fork progression represents a general mechanism that triggers replication stress and the DNA damage response. Our findings contribute to a better understanding of the mechanism of fork speed control, with implications for genomic (in) stability and rational cancer treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据