4.8 Article

Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

期刊

NATURE
卷 507, 期 7490, 页码 109-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature13111

关键词

-

资金

  1. Deutsche Krebshilfe P9 in the Melanoma Research Network
  2. DFG [SFB832, SFB704, HO 4281/2-1, SFB829, SFB829 Z2]
  3. BONFOR
  4. NRW junior research group
  5. Jurgen Manchot Stiftung
  6. AIRC

向作者/读者索取更多资源

Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma(1). The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established(2), but how the microenvironmental effects of UV radiation(3,4) influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model(5) promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists(6). Angiotropism represents a hitherto underappreciated mechanism of metastasis(7) that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere with metastatic progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据