4.6 Article

GLOBAL CONVERGENCE OF SPLITTING METHODS FOR NONCONVEX COMPOSITE OPTIMIZATION

期刊

SIAM JOURNAL ON OPTIMIZATION
卷 25, 期 4, 页码 2434-2460

出版社

SIAM PUBLICATIONS
DOI: 10.1137/140998135

关键词

global convergence; nonconvex composite optimization; alternating direction method of multipliers; proximal gradient algorithm; Kurdyka-Lojasiewicz property

资金

  1. Australian Research Council

向作者/读者索取更多资源

We consider the problem of minimizing the sum of a smooth function h with a bounded Hessian and a nonsmooth function. We assume that the latter function is a composition of a proper closed function P and a surjective linear map M, with the proximal mappings of tau P, tau > 0, simple to compute. This problem is nonconvex in general and encompasses many important applications in engineering and machine learning. In this paper, we examined two types of splitting methods for solving this nonconvex optimization problem: the alternating direction method of multipliers and the proximal gradient algorithm. For the direct adaptation of the alternating direction method of multipliers, we show that if the penalty parameter is chosen sufficiently large and the sequence generated has a cluster point, then it gives a stationary point of the nonconvex problem. We also establish convergence of the whole sequence under an additional assumption that the functions h and P are semialgebraic. Furthermore, we give simple sufficient conditions to guarantee boundedness of the sequence generated. These conditions can be satisfied for a wide range of applications including the least squares problem with the l(1/2) regularization. Finally, when M is the identity so that the proximal gradient algorithm can be efficiently applied, we show that any cluster point is stationary under a slightly more flexible constant step-size rule than what is known in the literature for a nonconvex h.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据