4.8 Article

Transcranial amelioration of inflammation and cell death after brain injury

期刊

NATURE
卷 505, 期 7482, 页码 223-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature12808

关键词

-

资金

  1. National Institutes of Health (NIH)
  2. National Institute of Neurological Disorders and Stroke (NINDS)
  3. Center for Neuroscience and Regenerative Medicine (CNRM) at the Uniformed Services University of the Health Sciences
  4. NIH
  5. Department of Defense
  6. Walter Reed National Military Medical Center

向作者/读者索取更多资源

Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function(1,2). At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据