4.8 Article

Colloidal assembly directed by virtual magnetic moulds

期刊

NATURE
卷 503, 期 7474, 页码 99-103

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature12591

关键词

-

资金

  1. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000989]
  2. Non-equilibrium Energy Research Center, Energy Frontier Research Center

向作者/读者索取更多资源

Interest in assemblies of colloidal particles(1-4) has long been motivated by their applications in photonics(5,6), electronics(7,8), sensors(8) and microlenses(9). Existing assembly schemes(10-15) can position colloids of one type relatively flexibly into a range of desired structures, but it remains challenging to produce multicomponent lattices, clusters with precisely controlled symmetries and three-dimensional assemblies(16). A few schemes can efficiently produce complex colloidal structures(2,17,18), but they require system-specific procedures. Here we show that magnetic field microgradients established in a paramagnetic fluid(19,20) can serve as 'virtual moulds' to act as templates for the assembly of large numbers (similar to 10(8)) of both non-magnetic and magnetic colloidal particles with micrometre precision and typical yields of 80 to 90 per cent. We illustrate the versatility of this approach by producing single-component and multicomponent colloidal arrays, complex three-dimensional structures and a variety of colloidal molecules from polymeric particles, silica particles and live bacteria and by showing that all of these structures can be made permanent. In addition, although our magnetic moulds currently resemble optical traps in that they are limited to the manipulation of micrometre-sized objects, they are massively parallel and can manipulate non-magnetic and magnetic objects simultaneously in two and three dimensions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据