4.8 Article

Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β

期刊

NATURE
卷 485, 期 7396, 页码 123-127

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature11048

关键词

-

资金

  1. National Research Service Award [T32-HL007770]
  2. National Institutes of Health [DK062434, DK057978, DK090962, DK091618, HL105278]
  3. National Health and Medical Research Council of Australia [NHMRC 512354, 632886]
  4. Helmsley Charitable Trust
  5. Glenn Foundation
  6. Howard Hughes Medical Institute

向作者/读者索取更多资源

The circadian clock acts at the genomic level to coordinate internal behavioural and physiological rhythms via the CLOCK-BMAL1 transcriptional heterodimer. Although the nuclear receptors REV-ERB-alpha and REV-ERB-beta have been proposed to form an accessory feedback loop that contributes to clock function(1,2), their precise roles and importance remain unresolved. To establish their regulatory potential, we determined the genome-wide cis-acting targets (cistromes) of both REV-ERB isoforms in murine liver, which revealed shared recognition at over 50% of their total DNA binding sites and extensive overlap with the master circadian regulator BMAL1. Although REV-ERB-alpha has been shown to regulate Bmal1 expression directly(1,2), our cistromic analysis reveals a more profound connection between BMAL1 and the REV-ERB-alpha and REV-ERB-beta genomic regulatory circuits than was previously suspected. Genes within the intersection of the BMAL1, REV-ERB-alpha and REV-ERB-beta cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erb-alpha and Rev-erb-beta function by creating double-knockout mice profoundly disrupted circadian expression of core circadian clock and lipid homeostatic gene networks. As a result, double-knockout mice show markedly altered circadian wheel-running behaviour and deregulated lipid metabolism. These data now unite REV-ERB-alpha and REV-ERB-beta with PER, CRY and other components of the principal feedback loop that drives circadian expression and indicate a more integral mechanism for the coordination of circadian rhythm and metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据