4.8 Article

Towards an exact description of electronic wavefunctions in real solids

期刊

NATURE
卷 493, 期 7432, 页码 365-370

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature11770

关键词

-

资金

  1. Trinity College, Cambridge
  2. Austrian Academy of Sciences
  3. Austrian Science fund (FWF) within the SFB ViCoM [F41]
  4. EPSRC [EP/I014624/1, EP/J003867/1]
  5. EPSRC [EP/J003867/1, EP/I014624/1] Funding Source: UKRI
  6. Engineering and Physical Sciences Research Council [EP/J003867/1, EP/I014624/1] Funding Source: researchfish

向作者/读者索取更多资源

The properties of all materials arise largely from the quantum mechanics of their constituent electrons under the influence of the electric field of the nuclei. The solution of the underlying many-electron Schrodinger equation is a 'non-polynomial hard' problem, owing to the complex interplay of kinetic energy, electron-electron repulsion and the Pauli exclusion principle. The dominant computational method for describing such systems has been density functional theory. Quantum-chemical methods-based on an explicit ansatz for the many-electron wavefunctions and, hence, potentially more accurate-have not been fully explored in the solid state owing to their computational complexity, which ranges from strongly exponential to high-order polynomial in system size. Here we report the application of an exact technique, full configuration interaction quantum Monte Carlo to a variety of real solids, providing reference many-electron energies that are used to rigorously benchmark the standard hierarchy of quantum-chemical techniques, up to the 'gold standard' coupled-cluster ansatz, including single, double and perturbative triple particle-hole excitation operators. We show the errors in cohesive energies predicted by this method to be small, indicating the potential of this computationally polynomial scaling technique to tackle current solid-state problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据