4.8 Article

Quantum gates and memory using microwave-dressed states

期刊

NATURE
卷 476, 期 7359, 页码 185-U83

出版社

NATURE PORTFOLIO
DOI: 10.1038/nature10319

关键词

-

资金

  1. Bundesministerium fur Bildung und Forschung [FK 01BQ1012, P3352014]
  2. Deutsche Forschungsgemeinschaft
  3. European Commission under the STREP PICC
  4. German-Israeli Foundation
  5. secunet AG
  6. Alexander von Humboldt Foundation

向作者/读者索取更多资源

Trapped atomic ions have been used successfully to demonstrate(1) basic elements of universal quantum information processing. Nevertheless, scaling up such methods to achieve large-scale, universal quantum information processing (or more specialized quantum simulations(2-5)) remains challenging. The use of easily controllable and stable microwave sources, rather than complex laser systems(6,7), could remove obstacles to scalability. However, the microwave approach has drawbacks: it involves the use of magnetic-field sensitive states, which shorten coherence times considerably, and requires large, stable magnetic field gradients. Here we show how to overcome both problems by using stationary atomic quantum states as qubits that are induced by microwave fields (that is, by dressing magnetic-field-sensitive states with microwave fields). This permits fast quantum logic, even in the presence of a small (effective) Lamb-Dicke parameter (and, therefore, moderate magnetic field gradients). We experimentally demonstrate the basic building blocks of this scheme, showing that the dressed states are long lived and that coherence times are increased by more than two orders of magnitude relative to those of bare magnetic-field-sensitive states. This improves the prospects of microwave-driven ion trap quantum information processing, and offers a route to extending coherence times in all systems that suffer from magnetic noise, such as neutral atoms, nitrogen-vacancy centres, quantum dots or circuit quantum electrodynamic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据