4.8 Article

Primary motor cortex underlies multi-joint integration for fast feedback control

期刊

NATURE
卷 478, 期 7369, 页码 387-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature10436

关键词

-

资金

  1. Canadian Institutes of Health Research (CIHR)
  2. National Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

A basic difficulty for the nervous system is integrating locally ambiguous sensory information to form accurate perceptions about the outside world(1-4). This local-to-global problem is also fundamental to motor control of the arm, because complex mechanical interactions between shoulder and elbow allow a particular amount of motion at one joint to arise from an infinite combination of shoulder and elbow torques(5). Here we show, in humans and rhesus monkeys, that a transcortical pathway through primary motor cortex (M1) resolves this ambiguity during fast feedback control. We demonstrate that single M1 neurons of behaving monkeys can integrate shoulder and elbow motion information into motor commands that appropriately counter the underlying torque within about 50 milliseconds of a mechanical perturbation. Moreover, we reveal a causal link between M1 processing and multi-joint integration in humans by showing that shoulder muscle responses occurring 50 milliseconds after pure elbow displacement can be potentiated by transcranial magnetic stimulation. Taken together, our results show that transcortical processing through M1 permits feedback responses to express a level of sophistication that rivals voluntary control; this provides neurophysiological support for influential theories positing that voluntary movement is generated by the intelligent manipulation of sensory feedback(6,7).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据