4.8 Article

Neuropsin cleaves EphB2 in the amygdala to control anxiety

期刊

NATURE
卷 473, 期 7347, 页码 372-U553

出版社

NATURE PORTFOLIO
DOI: 10.1038/nature09938

关键词

-

资金

  1. Medical Research Council [G0500231/73852]
  2. European Commission [MEXT-CT-2006-042265, LSHM-CT-2004-005166]
  3. Medisearch Fellowship
  4. Ministry of Education, Culture, Sports, Science and Technology of Japan [20300128]
  5. Japan Science and Technology Agency
  6. Ministry of Science and Higher Education of Poland [NN405 274137]
  7. Medical Research Council [G0500231] Funding Source: researchfish
  8. Grants-in-Aid for Scientific Research [20300128] Funding Source: KAKEN
  9. MRC [G0500231] Funding Source: UKRI

向作者/读者索取更多资源

A minority of individuals experiencing traumatic events develop anxiety disorders. The reason for the lack of correspondence between the prevalence of exposure to psychological trauma and the development of anxiety is unknown. Extracellular proteolysis contributes to fear-associated responses by facilitating neuronal plasticity at the neuron-matrix interface(1-4). Here we show in mice that the serine protease neuropsin is critical for stress-related plasticity in the amygdala by regulating the dynamics of the EphB2-NMDA-receptor interaction, the expression of Fkbp5 and anxiety-like behaviour. Stress results in neuropsin-dependent cleavage of EphB2 in the amygdala causing dissociation of EphB2 from the NR1 subunit of the NMDA receptor and promoting membrane turnover of EphB2 receptors. Dynamic EphB2-NR1 interaction enhances NMDA receptor current, induces Fkbp5 gene expression and enhances behavioural signatures of anxiety. On stress, neuropsin-deficient mice do not show EphB2 cleavage and its dissociation from NR1 resulting in a static EphB2-NR1 interaction, attenuated induction of the Fkbp5 gene and low anxiety. The behavioural response to stress can be restored by intra-amygdala injection of neuropsin into neuropsin-deficient mice and disrupted by the injection of either anti-EphB2 antibodies or silencing the Fkbp5 gene in the amygdala of wild-type mice. Our findings establish a novel neuronal pathway linking stress-induced proteolysis of EphB2 in the amygdala to anxiety.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据